Group of Environmental Response Systems

  Link to group homepage

Faculty staff

Prof. Dr. Takashi HIRAYAMA
(please change AT to @ before sending)
Assoc. Prof. Dr. Izumi MORI
(please change AT to @ before sending)
Assoc. Prof. Dr. Yoko IKEDA
(please change AT to @ before sending)

Lectures: Environmental Stress Response Systems, Advanced Signaling Mechanisms, Plant Molecular Cell Physiology
Keywords: Environment; Stress response; Phytohormones; Signal transduction

Summary of main research topics

Uncovering secrets of plants: how plants ‘know’ their surroundings and ‘think up’ ways to cope with them
Being sessile, plants must adapt to all environmental changes or perish. Plants are already well-known to recognize environmental fluctuations and to respond promptly to such changes. Nevertheless, it remains unclear how plants dissect and integrate environmental signals and make a decision to render an optimal response even with no information-integration systems such as those of our central nervous system. To address this question, our group investigates environmental stress response systems of plants using physiological, molecular biological, and molecular genetic approaches. Among stress responses, we emphasize the study of stress-associated plant hormone signaling. Our ultimate goal is to take advantage of the research outcomes to create stress-tolerant crops.

Latest publications (for complete and most current publications visit group pages)

(1) Iida, M., Takano, T., Matsuura, T., Mori, I. C. and Takagi, S. Circumnutation and distribution of phytohormones in Vigna angularis epicotyls. J. Plant Res. 131: 165-178. doi: 10.1007/s10265-017-0972-y (2018. 1.)
(2) Kouzai, Y., Kimura, M., Watanabe, M., Kusunoki, K., Osaka, D., Suzuki, T., Matsui, H., Yamamoto, M., Ichinose, Y., Toyoda, K., Matsuura, T., Mori, I. C., Hirayama, T., Minami, E., Nishizawa, Y., Inoue, K., Onda, Y., Mochida, K. and Noutoshi, Y. Salicylic acid ‐ dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. New Phytol. 217: 771-783. dori: 10.1111/nph.14849. (2018. 1.)
(3) Matsuura, T., Mori, I. C., Ikeda Y., Hirayama, T. and Mikami, K. Comprehensive phytohormone quantification in the red alga Pyropia yezoensis by liquid chromatography–mass spectrometry. In Protocols for macroalgae research. (eds.) B. Charrier, T. Wichard and C.R.K. Reddy. pp. 226 – 236. CRC Press (2018. 4.)
(4) Frost, J. M., Kim, M. Y., Park, G. T., Hsieh, P. H., Nakamura, M., Lin, S. J. H., Yoo, H., Choi, J., Ikeda, Y., Kinoshita, T., Choi, Y., Zilberman, D. and Fischer, R. L. FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115: E4720-E4729. (2018. 5.)
(5) Heng, L.Y., Ooi, L., Mori, I. C. and Futra, D. Environmental toxicity and evaluation. In Environmental risk analysis for asian-oriented, risk-based watershed management. (eds.) M. Yoneda and M. Mokhtar. pp. 71-94. Springer, Singapore. doi: 10.1007/978-981-10-8090-6_6 (2018. 5.)
(6) Nishimura, N., Tsuchiya, W., Moresco, J. J., Hayashi, Y., Satoh, K., Kaiwa, N., Irisa, T., Kinoshita, T., Schroeder, J. I., Yates III, J. R., Hirayama, T. and Yamazaki, T. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Commun. 9: 2132. (2018. 6.)
(7) Mori, I. C., Nobukiyo, Y., Nakahara, Y., Shibasaka, M., Furuichi, T. and Katsuhara, M. A cyclic nucleoride-gated channel, HvCNGC2-3, is activated by the co-presence of Na+ and K+ and permeable to Na+ and K+ non-selectively. Plants 7: 61. doi: 10.3390/plants7030061 (2018. 7.)
(8) Hirayama, T., Lei, G. J., Yamaji, N., Nakagawa, N. and Ma. J. F. The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis. Plant Cell Physiol. 59: 1739-1752. (2018. 9.)
(9) Takagi, H., Watanabe, S., Tanaka, S., Matsuura, T., Mori, I. C., Hirayama, T., Shimada, H. and Sakamoto, A. Disruption of ureide degradation affects plant growth and development during and after transition from vegetative to reproductive stages. BMC Plant Biol. 18: 287. doi: 10.1186.s 12870-018-1491-2. (2018. 11.)
(10) Ikeda, Y., Nishihama, R., Yamaoka, S., Arteaga-Vazquez, M. A., Grimanelli, D., Pogorelcnik, R., Martienssen, R. T., Yamato, K. T., Kohchi, T., Hirayama, T. and Mathieu, O. Loss of CG methylation in Marchantia polymorpha caused disorganization of cell division and reveals unique DNA methylation regulatory mechanisms of non-CG methylation. Plant Cell Physiol. 59: 2421–2431. (2018. 12.)
(11) Ooi, L., Matsuura, T., Munemasa, S., Murata, Y., Katsuhara, M., Hirayama, T. and Mori, I. C. The mechanism of SO2-induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. Plant Cell Environ. doi: 10.1111/pce.13406. (2018. 7. Online preview)
(12) Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka, S., Nishii, R. and Melgani, F. Computer vision-based phenotyping for improvement of plant productivity: A machine learning perspective. GigaScience (2018. 12. Online preview).