Plant Light Acclimation Research Group

logoE   Link to group homepage

Faculty staff

Prof. Dr. Wataru SAKAMOTO
(please change AT to @ before sending)
Sonoda2.jpg Assoc. Prof. Dr. Ryo MATSUSHIMA
(please change AT to @ before sending)
kato photo Assist. Prof. Dr. Yusuke KATO
(please change AT to @ before sending)

Lectures: Model Plant Genetics and Breeding, Plant Physiology and Genetics
Keywords: Photosynthesis; Organelle structure and development; Chloroplast; Light

Summary of main research topics

Photosynthesis and chloroplast biogenesis: Understanding to innovation
Our life on earth cannot continue without the atmospheric environment, which is maintained by oxygenic photosynthesis. Plants perform photosynthesis in chloroplasts, where light energy is converted into chemical energy by a series of electrochemical reactions. In contrast, sessile land plants are exposed incessantly to excess light energy or harsh atmospheric environments that engender ‘photodamage’. How do plants cope with such photosynthetic inactivation? What are the key elements to maintaining or even maximizing chloroplast functions? Our group studies various aspects of chloroplast development and photosynthesis. Through understanding of the factors involved in photoprotection and chloroplast function, we aim at improving crop productivity against atmospheric stress over the long term.

Latest publications (for complete and most current publications visit group pages)

(1) Toyoshima, M., Sakata, M., Ohnishi, K., Tokumaru, Y., Kato, Y., Tokutsu, R., Sakamoto, W., Minagawa, J., Matsuda, F. and Shimizu, H. Targeted proteome analysis of microalgae under high-light conditions by optimized protein extraction of photosynthetic organisms. J. Biosci. Bioeng. 127: 394-402. (2019. 3.)
(2) Matsushima, R. and Hisano, H. Imaging Amyloplasts in the Developing Endosperm of Barley and Rice. Sci. Rep. 9: 3745. (2019. 3.)
(3) Duan, J., Lee, K.P., Dogra, V., Zhang, S., Liu, K., Caceres-Moreno, C., Lv, S., Xing, W., Kato, Y., Sakamoto, W., Liu, R., Macho, A.P. and Kim, C. Impaired PSII proteostasis promotes retrograde signaling via salicylic acid. Plant Physiol. 180: 2182–2197. (2019. 8.)
(4) 坂本 亘・高見常明 オルガネラDNAを自己分解して栄養分にする~細胞内共生から生じた種子植物の生存戦略~. 化学と生物 57: 478-483. (2019. 8.)
(5) Kato, Y. and Sakamoto, W. Phosphorylation of the Chloroplastic Metalloprotease FtsH in Arabidopsis Characterized by Phos-Tag SDS-PAGE. Front. Plant Sci. 10: 1080. doi: 10.3389/fpls.2019.01080 (2019. 9.)
(6) Ohnishi, N., Wacera, F. and Sakamoto, W. Photosynthetic Responses to High Temperature and Strong Light Suggest Potential Post-flowering Drought Tolerance of Sorghum Japanese Landrace Takakibi. Plant Cell Physiol. 60: 2086-2099. (2019. 9.)
(7) Yamamoto, M., Nishimura, K., Kitashiba, H., Sakamoto, W. and Nishio, T. High temperature causes breakdown of S haplotype-dependent stigmatic self-incompatibility in self-incompatible Arabidopsis thaliana. J. Exp. Bot. 70: 5745-5751. (2019. 10.)
(8) 坂本 亘・高見常明 葉緑体DNA分解による種子植物のリン再利用戦略.生化学 91: 785-789. (2019. 12.)
(9) Busch, F.A., Tominaga, J., Muroya, M., Shirakami, N., Takahashi, S., Yamori, W., Kitaoka, T., Milward, SE., Nishimura, K., Matsunami, E., Toda, Y., Higuchi, C., Muranaka, A., Takami, T., Watanabe, S., Kinoshita, T., Sakamoto, W., Sakamoto, A. and Shimada, H. Overexpression of BUNDLE SHEATH DEFECTIVE 2 improves the efficiency of photosynthesis and growth in Arabidopsis. Plant J. doi: 10.1111/tpj.14617 (2019. 11. Online preview)