Group of Plant Stress Physiology

hd_h1  Link to group homepage

Faculty staff

Prof. Dr. Jian Feng Ma
(please change AT to @ before sending)
Assoc. Prof. Dr. Naoki YAMAJI
(please change AT to @ before sending)
Assoc. Prof. Dr. Namiki MITANI
(please change AT to @ before sending)
Assist. Prof. Dr. Kengo YOKOSHO
(please change AT to @ before sending)

Lectures: Plant Stress Physiology, Plant Stress Physiology, Plant Stress Molecular Biology
Keywords: Mineral stress; Nutrition; Transport; Crop

Summary of main research topics

Strategies of plants to overcome mineral stresses
Plants rooting in soil must take up mineral nutrients as well as water for their growth. A deficiency or excess of a mineral element can cause growth inhibition. However, some plant species have developed strategies to overcome mineral stresses. Our group specifically examines the mechanisms of uptake, distribution, and accumulation of mineral elements including essential, beneficial and toxic elements from the intact plant level to the gene level. We aim at making a future contribution to sustainable and safe crop production.

Latest publications (for complete and most current publications visit group pages)

(1) Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J. and Bélanger, R. R. The controversies of silicon’s role in plant biology. New Phytol. 221: 67-85. (2019. 1.)
(2) Chang, M., Gu, M., Xia, Y., Dai, X., Dai, C., Zhang, J., Wang, S., Qu, H., Yamaji, N., Ma, J. F. and Xu, G. OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. Plant Physiol. 179: 656-670. (2019. 2.)
(3) Wang, W., Yamaji, N. and Ma, J. F. Molecular Mechanism of Cadmium Accumulation in Rice. Cadmium Toxicity, pp. 115-124. Springer, Singapore. (2019. 2.)
(4) Chen, L., Qin, L., Zhou, L., Li, X., Chen, Z., Sun, L., Wang, W., Lin, Z., Zhao, J., Yamaji, N., Ma, J. F., Gu, M., Xu, G. and Liao, H. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean. New Phytol. 221: 2013-2025. (2019. 3.)
(5) Cai, H., Huang, S., Che, J., Yamaji, N. and Ma, J. F. The tonoplast-localized OsHMA3 plays an important role in maintaining Zn homeostasis in rice. J. Exp. Bot. 70: 2717-2725. (2019. 5.)
(6) Lu, C., Zhang, L., Tang, Z., Huang, X. Y., Ma, J. F. and Zhao, F. J. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environment International 126: 619-626. (2019. 5.)
(7) Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J. and Bélanger, R. R. In defence of the selective transport and role of silicon in plants. New Phytol. 223: 514-516. (2019. 7.)
(8) Wang, S., Yokosho, K., Guo, R., Whelan, J., Ruan, Y. L., Ma, J. F. and Shou, H. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol. 180: 2133-2141. (2019. 8.)
(9) Yamaji, N. and Ma, J. F. Bioimaging of multiple elements by high‐resolution LA‐ICP‐MS reveals altered distribution of mineral elements in the nodes of rice mutants. Plant J. 99: 1254-1263. (2019. 9.)
(10) Peng, Y. Y., Liao, L. L., Liu, S., Nie, M. M., Li, J., Zhang, L. D., Ma, J. F. and Chen, Z. C. Magnesium deficiency triggers SGR–mediated chlorophyll degradation for magnesium remobilization. Plant Physiol. 181: 262-275. (2019. 9.)
(11) Che, J., Yokosho, K., Yamaji, N. and Ma, J. F. A vacuolar phytosiderophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiol. 181: 276-288. (2019. 9.)
(12) Fu, S., Lu, Y., Zhang, X., Yang, G., Chao, D., Wang, Z., Shi, M., Chen, J., Chao, D., Li, R., Ma, J. F. and Xia, J. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J. Exp. Bot. 70: 5909-5918. (2019. 10.)
(13) Wang, Z., Yamaji, N., Huang, S., Zhang, X., Shi, M., Fu, S. Yang, G., Ma, J. F.*and Xia, J.* OsCASP1 is required for Casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell 31: 2636-2648. (2019. 11.)
(14) Schaller, J., Heimes, R., Ma, J.F. Meunier, J-D, Shao, J. F., Fujii-Kashino, M. and Knorr, K. H. Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant and Soil 444: 399-407. (2019. 11.)
(15) Pommerrenig, B., Diehn, T.A., Bernhardt, N., Bienert, M. D., Mitani‐Ueno, N., Fuge, J., Bieber, A., Spitzer, C., Bräutigam, A., Ma, J. F., Chaumont, F. and Bienert, G. P. Functional evolution of nodulin26‐like Intrinsic proteins: from bacterial arsenic detoxification to plant nutrient transport. New Phytologist (2019. 9. Online preview)
(16) Wang, S., Li, L., Ying, Y., Wang, J., Shao, J. F., Yamaji, N., Whelan, J., Ma, J. F. and Shou, H. A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localizing IRO2 to the nucleus in rice. New Phytologist (2019. 10. Online preview)
(17) Ding, G., Lei, G. J., Yamaji, N., Yokosho, K., Mitani-Ueno, N., Huang, S. and Ma, J. F. Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis. Molecular Plant (2019. 10. Online preview)
(18) Sun, H., Duan, Y., Mitani‐Ueno, N., Che, J., Jia, J., Liu, J., Guo, J., Ma, J.F. and Gong, H. Tomato roots have a functional silicon influx transporter, but not a functional silicon efflux transporter. Plant, Cell & Environment (2019. 11. Online preview)
(19) Yu, E., Yamaji, N. and Ma, J.F. Altered root structure affects both expression and cellular localization of transporters for mineral element uptake in rice. Plant and Cell Physiology (2019. 11. Online preview)
(20) Wang, P., Yamaji, N., Inoue, K., Mochida, K. and Ma, J.F. Plastic transport systems of rice for mineral elements in response to diverse soil environmental changes. New Phytologist (2019. 11. Online preview)