Group of Plant Stress Physiology

hd_h1  Link to group homepage

Faculty staff

Prof. Dr. Jian Feng Ma
(please change AT to @ before sending)
Assoc. Prof. Dr. Naoki YAMAJI
(please change AT to @ before sending)
Assoc. Prof. Dr. Namiki MITANI
(please change AT to @ before sending)
Assist. Prof. Dr. Kengo YOKOSHO
(please change AT to @ before sending)

Lectures: Plant Stress Physiology, Plant Stress Physiology, Plant Stress Molecular Biology
Keywords: Mineral stress; Nutrition; Transport; Crop

Summary of main research topics

Strategies of plants to overcome mineral stresses
Plants rooting in soil must take up mineral nutrients as well as water for their growth. A deficiency or excess of a mineral element can cause growth inhibition. However, some plant species have developed strategies to overcome mineral stresses. Our group specifically examines the mechanisms of uptake, distribution, and accumulation of mineral elements including essential, beneficial and toxic elements from the intact plant level to the gene level. We aim at making a future contribution to sustainable and safe crop production.

Latest publications (for complete and most current publications visit group pages)

(1) Yamaji, N., Takemoto, Y., Miyaji, T., Mitani-Ueno, N., Yoshida, K. T. and Ma, J. F. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541: 92-95. doi: 10.1038/nature20610 (2017. 1.)
(2) Chungopast, S., Duangkhet, M., Tajima, S., Ma, J. F. and Nomura, M. Iron-induced nitric oxide leads to an increase in the expression of ferritin during the senescence of Lotus japonicas. J. Plant Physiol. 208: 40-46. doi: 10.1016/j.jplph.2016.11.004 (2017. 1.)
(3) Shao, J. F., Fujii-Kashino, M., Yamaji, N., Fukuoka, S., Shen, R. F. and Ma, J. F. Isolation and characterization of a rice line with high Cd accumulation for potential use in phytoremediation. Plant Soil 410: 357-368. doi: 10.1007/s11104-016-3014-y (2017. 1.)
(4) Shao, J. F., Yamaji, N., Shen, R. F. and Ma, J. F. The key to Mn homeostasis in plants: Regulation of Mn transporters. Trends Plant Sci. 22: 215-224. (2017. 3.)
(5) Wang, S., Yoshinari, A., Shimada, T., Hara-Nishimura, I., Mitani-Ueno, N., Ma, J. F., Naito, S. and Takano, J. Polar localization of the NIP5;1 boric acid channel is maintained by endocytosis and facilitates boron transport in Arabidopsis roots. Plant Cell 29: 824-842. (2017. 4.)
(6) Yamaji, N. and Ma, J. F. Node-controlled allocation of mineral elements in Poaceae. Current Opin. Plant Biol. 39: 18-24. (2017. 5.)
(7) Ratcliffe, S., Jugdaohsingh, R., Vivancos, J., Marron, A., Deshmukh, R., Ma, J. F., Mitani-Ueno, N., Robertson, J., Wills, J., Boekschoten, M. V., Muller, M., Mawhinney, R. C., Kinrade, S. D., Isenring, P., Belanger, R. R. and Powell, J. J. Identification of a mammalian silicon transporter. Ameri. J. Physiol. – Cell Physiol. 312: C550-C561; DOI: 10.1152/ajpcell.00219.2015 (2017. 5.)
(8) Chen, Z. C., Yamaji, N., Horie, T., Che, J., Li, J., An, G. and Ma, J. F. A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol. 174: 1837-1849. (2017. 7.)
(9) Sakurai, G., Yamaji, N., Mitani-Ueno, N., Yokozawa, M., Ono, K. and Ma, J. F. A model of silicon dynamics in rice: An analysis of the investment efficiency of Si transporters. Front Plant Sci. 8: 1187. (2017. 7.)
(10) Kobayashi, N. I., Yamaji, N., Yamamoto, H., Okubo, K., Ueno, H., Costa, A., Tanoi, K., Matsumura, H., Fujii-Kashino, M., Horiuchi, T., Nayef, M., A., Shabala, S., An, G., Ma, J. F. and Horie, T. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J. 91: 657-670. (2017. 8.)
(11) Lei, G. J., Yokosho, K., Yamaji, N., Fujii-Kashino, M. and Ma, J. F. Functional characterization of two half-size ABC transporter genes in aluminium-accumulating buckwheat. New Phytol. 215: 1080-1089. (2017. 8.)
(12) Takemoto, Y., Tsunemitsu, Y., Fujii-Kashino, M., Mitani-Ueno, N., Yamaji, N., Ma, J. F., Kato, S., Iwasaki. K. and Ueno, D. The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant Cell Physiol. 58: 1573-1582. (2017. 9.)
(13) Deshmukh, R. K., Ma, J. F. and Belanger, R, R. Role of silicon in plants. Front Plant Sci. 8: 1858. (2017. 10.)
(14) Ishikawa, R., Iwata, M., Taniko, K., Monden, G., Miyazaki, N., Orn, C., Tsujimura, Y., Yoshida, S., Ma, J.F. and Ishii, T. Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS One 12(10): e0187224. doi: 10.1371/journal.pone.0187224 (2017. 10.)
(15) Li, C., Chen, G., Mishina, K., Yamaji, N., Ma, J. F., Yukuhiro, F., Tagiri, A., Liu, C., Pourkheirandish, M., Anwar, N., Ohta, M., Zhao, P., Lundqvist, U., Li, X. and Komatsuda, T. A GDSL-motif esterase/acyltransferase/lipase is responsible for leaf water retention in barley. Plant Direct 1: 1-12. DOI: 10.1002/pld3.25 (2017. 11.)
(16) Shao, J. F., Che. J., Yamaji, N., Shen, R. F. and Ma, J. F. Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice. J. Exp. Bot. 68: 5641-5651. doi: 10.1093/jxb/erx364 (2017. 11.)
(17) Lei, G. J., Yokosho, K., Yamaji, N. and Ma, J. F. Two MATE transporters with different subcellular localization are involved in Al tolerance in buckwheat. Plant Cell Physiol. 58: 2179-2189. doi: 10.1093/pcp/pcx152 (2017. 12.)