Research

Group of Plant-Insect Interactions

PPI_logo6 Link to group homepage

Faculty staff

Ivan3a Prof. Dr. Ivan GALIS
E-mail:igalisATokayama-u.ac.jp
(please change AT to @ before sending)
Tomonori.png Assoc. Prof. Dr. Tomonori SHINYA
E-mail:shinyatATrib.okayama-u.ac.jp
(please change AT to @ before sending)

Lectures: Plant Genetics and Biotic Stress Science, Topics in Plant-Insect Interactions
Keywords: Plant defense mechanisms; Direct and indirect defense; Insect herbivores


Summary of main research topics

Elucidation of plant-insect interactions at the molecular level
Establishment of effective plant defense systems against herbivores in natural history reflects the existence of extremely variable interactions between plants and insects, also known as co-evolution process. Our group strives to understand, at a molecular level, the mechanisms of activation, signal transduction and metabolic basics of plant defenses triggered after the recognition of insect attack. Furthermore, we target sustainable pest control by the use of natural enemies and their attraction to herbivore-infested plants by the emissions of various volatile organic compounds (VOCs) from plants.
pii

Latest publications (for complete and most current publications visit group pages)

(1) Aboshi, T., Iitsuka, C., Galis, I., Teraishi, M., Kamo, M., Nishimura, A., Ishihara, A., Mori, N. and Murayama, T. Isopentylamine is a novel defense compound induced by insect feeding in rice. Plant Cell Environ. 44: 247-256. doi.org/10.1111/pce.13902 (2021. 1.)
(2) Wari, D., Kuramitsu, K. and Kavallieratos, N. G. Sap-sucking pests; they do matter. Insects 12: 363. doi: 10.3390/insects12040363 (2021. 4.)
(3) Inagaki, H., Miyamoto, K., Ando, N., Murakami, K., Sugisawa, K., Morita, S., Yumoto, E., Teruya, M., Uchida, K., Kato, N., Kaji, T., Takaoka, Y., Hojo, Y., Shinya, T., Galis, I, Nozawa, A., Sawasaki, T., Nojiri, H., Ueda, U. and Okada, K. Deciphering OPDA signaling components in the momilactone-producing moss Calohypnum plumiforme. Front. Plant Sci. 12: 688565. doi.org/10.3389/fpls.2021.688565 (2021. 5.)
(4) Mujiono, K., Tohi, T., Sobhy, I. S., Hojo, Y., Shinya, T. and Galis, I. Herbivore-induced and constitutive volatiles are controlled by different oxylipin-dependent mechanisms in rice. Plant Cell Environ. 44: 2687-2699. doi.org/10.1111/pce.14126 (2021. 8.)
(5) Swetha, B., Singiri, J. R., Novoplansky, N., Grandhi, R., Srinivasan, J., Khadka, J., Galis, I. and Grafi, G. Single and combined salinity and heat stresses impact yield and dead pericarp priming activity. Plants 10: 1627. doi.org/10.3390/plants10081627 (2021. 8. )
(6) Yamasaki, Y., Sumioka, H., Takiguchi, M., Uemura, T., Kihara, Y., Shinya, T., Galis, I. and Arimura, G. I. Phytohormonedependent plant defense signaling orchestrated by oral bacteria of the herbivore Spodoptera litura. New Phytol. 231: 2029-2038. doi.org/10.1111/nph.17444 (2021. 9.)
(7) Yu, E., Yamaji, N., Mochida, K., Galis, I., Asaka, K. and Ma, J. F. LYSINE KETOGLUTARATE REDUCTASE TRANSSPLICING RELATED 1 is involved in a temperature-dependent root growth in rice. J. Exp. Bot. 72: 6336-6349. doi.
org/10.1093/jxb/erab240 (2021. 9.)
(8) Morita, M., Yamasaki, Y., Shinya, T., Galis, I. and Arimura, G. I. Phytohormone elicitation in maize by oral secretions of specialist Mythimna separata and generalist Spodoptera litura. J. Plant Interact. 16: 587-590. doi.org/10.1080/17429145.2021.2006334 (2021. 12.)
(9) Valea, I., Motegi, A., Kawamura, N., Kawamoto, K., Miyao, A., Ozawa, R., Takabayashi, J., Gomi, K., Nemoto, K., Nozawa, A., Sawasaki, T., Shinya, T., Galis, I., Miyamoto, K., Nojiri, H. and Okada, K. The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight. Plant Mol. Biol. doi: 10.1007/s11103-021-01186-0 (2021. 9. Online preview)
(10) Shiono, K., Yoshikawa, M., Kreszies, T., Yamada, S., Hojo, Y., Matsuura, T., Mori, I. C., Schreiber, L. and Yoshioka, T. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa). New Phytol. doi:10.1111/nph.17751 (2021. 11. Online preview)
(11) Shinya, T., Miyamoto, K., Uchida, K., Hojo, Y., Yumoto, E., Okada, K., Yamane, H. and Galis, I. Chitooligosaccharide elicitor and oxylipins synergistically elevate phytoalexin production in rice. Plant Mol. Biol. https://doi.org/10.1007/s11103-021-01217-w (2021. 11. Online preview)


Back to Top