Research

Group of Environmental Response Systems

  Link to group homepage

Faculty staff

Prof. Dr. Takashi HIRAYAMA
E-mail: hira-tATokayama-u.ac.jp
(please change AT to @ before sending)
Assoc. Prof. Dr. Izumi MORI
E-mail:imoriATokayama-u.ac.jp
(please change AT to @ before sending)
Assoc. Prof. Dr. Yoko IKEDA
E-mail:yikedaATokayama-u.ac.jp
(please change AT to @ before sending)

Lectures: Environmental Stress Response Systems, Advanced Signaling Mechanisms, Plant Molecular Cell Physiology
Keywords: Environment; Stress response; Phytohormones; Signal transduction


Summary of main research topics

Uncovering secrets of plants: how plants ‘know’ their surroundings and ‘think up’ ways to cope with them
Being sessile, plants must adapt to all environmental changes or perish. Plants are already well-known to recognize environmental fluctuations and to respond promptly to such changes. Nevertheless, it remains unclear how plants dissect and integrate environmental signals and make a decision to render an optimal response even with no information-integration systems such as those of our central nervous system. To address this question, our group investigates environmental stress response systems of plants using physiological, molecular biological, and molecular genetic approaches. Among stress responses, we emphasize the study of stress-associated plant hormone signaling. Our ultimate goal is to take advantage of the research outcomes to create stress-tolerant crops.
ERS

Latest publications (for complete and most current publications visit group pages)

(1) Himi E, Kurihara-Yonemoto S, Abe F, Takahashi H, Tanaka K, Matsuura T, Maekawa M, Sasaki T, Rikiishi K. Tamyb10‑D1 restores red grain color and increases grain dormancy via suppressing expression of TaLTP2.128, non‑specific lipid transfer protein in wheat. Euphytica. 220: 16. doi.org/10.1007/s10681-023-03265-3 (2024. 1.)
(2) Kumari P, Matushima R, Hirayama T, Mikami K. Responses of the marine filamentous red alga ʻBangiaʼ sp. ESS1 to recurrent changes in seawater concentration, Algal Research 80: 103551. doi.org/10.1016/j.algal.2024.10355 (2024. 6.)
(3) Unung O.O, Bensedira H.E.S, Matsuura T, Mori I.C, Shimomura Y, Yaeno T, Kaya H, Kobayashi, K. Possible roles of immunity-related response in modulating chlorosis induced by the silencing of chloroplast HSP90C in tobacco models. J. Gen. Plant Pathol. 90: 298-308. doi.org/10.1007/s10327-024-01191-3 (2024. 7.)
(4) 平山隆志 成長過程の理解と農業形質予測.アグリバイオ 8: 34-38. (2024. 7.)
(5) 池田陽子・植村美代子・森 泉 第4章 ChIP 用調整プロコトール 2植物組織② ChIP-seq とその応用編(カキ).誰でも再現できるNGS「前」サンプル調整プロトコール 実験医学別冊 ISBN 978-4-7581-2272-6 (2024. 7.)
(6) Hsiang T.F, Chen Y.Y, Nakano R, Oikawa A, Matsuura T, Ikeda Y, Yamane H. Dormancy regulator Prunus mume DAM6 promotes ethylene-mediated leaf senescence and abscission. Plant Mol. Biol. 114: 99. doi.org/10.1007/s11103-024-01497-y (2024. 9.)
(7) Mozhgani M, Ooi L, Espagne C, Filleur S, Mori I.C. Cytosolic acidification and oxidation are the toxic mechanisms of SO2 in Arabidopsis guard cells. Biosci. Biotechnol. Biochem. 88: 1164-1171. doi.org/10.1093/bbb/zbae092 (2024. 10.)
(8) Grossi C.E.M, Tani A, Mori I.C, Matsuura T, Ulloa R.M. Plant Growth-Promoting Abilities of Methylobacterium sp. 2A Involve Auxin-Mediated Regulation of the Root Architecture Plant Cell Environ. 47: 5343-5357. doi.org/10.1111/pce.15116 (2024. 12.)
(9) Mori A, Nakagawa S, Suzuki T, Suzuki T, Gaudin V, Matsuura T, Ikeda Y, Tamura K. The importin α proteins IMPA1, IMPA2, and IMPA4 play redundant roles in suppressing autoimmunity in Arabidopsis thaliana. Plant J. doi.org/10.1111/tpj.17203 (2024. 12. Online preview)
(10) Nakamura K, Kikuchi Y, Shiraga M, Kotake T, Hyodo K, Taketa S, Ikeda Y. SHORT AND CROOKED AWN, Encoding an Epigenetic Regulator EMF1, Promotes Barley Awn Development. Plant Cell Physiol. doi.org/10.1093/pcp/pcae150 (2024. 12. Online preview)


Back to Top