Research

Group of Plant Stress Physiology

hd_h1  Link to group homepage

Faculty staff

 

Prof. Dr. Jian Feng Ma
E-mail: majATokayama-u.ac.jp
(please change AT to @ before sending)
Assoc. Prof. Dr. Naoki YAMAJI
E-mail: n-yamajiATokayama-u.ac.jp
(please change AT to @ before sending)
Assoc. Prof. Dr. Namiki MITANI
E-mail:namiki-mATokayama-u.ac.jp
(please change AT to @ before sending)
Assist. Prof. Dr. Noriyuiki KONISHI
E-mail:Noriyuki_KonishiATokayama-u.ac.jp
(please change AT to @ before sending)

Lectures: Plant Stress Physiology, Plant Stress Physiology, Plant Stress Molecular Biology
Keywords: Mineral stress; Nutrition; Transport; Crop


Summary of main research topics

Strategies of plants to overcome mineral stresses
Plants rooting in soil must take up mineral nutrients as well as water for their growth. A deficiency or excess of a mineral element can cause growth inhibition. However, some plant species have developed strategies to overcome mineral stresses. Our group specifically examines the mechanisms of uptake, distribution, and accumulation of mineral elements including essential, beneficial and toxic elements from the intact plant level to the gene level. We aim at making a future contribution to sustainable and safe crop production.
PSP

Latest publications (for complete and most current publications visit group pages)

(1) Wang P, Yamaji N, Mitani-Ueno N, Ge J, Ma J.F. Knockout of a rice K5.2 gene increases Ca accumulation in the grain. J Integr. Plant Biol. 66: 252-264. doi.org/10.1111/jipb.13587 (2024. 2.)
(2) 馬 建鋒 私と作物のミネラル輸送機構. 肥料科学 45: 109-139. (2024. 2.)
(3) Huang S, Konishi N, Yamaji N, Ma J.F. Local distribution of manganese to leaf sheath is mediated by OsNramp5 in rice. New Phytol. 241: 1708-1719. doi.org/10.1111/nph.19454 (2024. 2.)
(4) Huang S, Yamaji N, Ma J.F. Metal Transport Systems in Plants. Annu. Rev. Plant Biol. 75: 1-25. doi.org/10.1146/annurevarplant-062923-021424 (2024. 2.)
(5) Yamaji N, Yoshioka Y, Huang S, Miyaji T, Sasaki A, Ma J.F. An oligo peptide transporter family member, OsOPT7, mediates xylem unloading of Fe for its preferential distribution in rice. New Phytol. 242: 2620-2634. doi.org/10.1111/nph.19756 (2024. 6.) 
(6) Huang H, Yamaji N, Ma J.F. Tissue-specific deposition, speciation and transport of antimony in rice. Plant Physiol. 195:2683–2693. doi.org/10.1093/plphys/kiae289 (2024. 6.) 
(7) 馬 建鋒・信濃卓郎・高野順平 植物栄養学 第3 版.文栄堂出版 ISBN:978-4-8300-4145-7 (2024. 7.)
(8) Huang S, Sato K, Ma J.F. Breeding for an elite malting barley cultivar with acid soil tolerance. Commun. Biol. 7: 1203. doi.org/10.1038/s42003-024-06903-1 (2024. 9.)
(9) Huang H. Identification of transporters involved in uptake of non-essential microelements in rice. 博士学位論文(岡山大学) (2024. 9.)
(10) Che J, Yamaji N, Wang S.F, Xia Y, Yang S.Y, Su Y.H, Shen R.F, Ma J.F. OsHAK4 functions in retrieving sodium from the phloem at the reproductive stage of rice. Plant J. 120: 76-90. doi.org/10.1111/tpj.16971 (2024. 10.)
(11) Yamaji N, Mitani-Ueno N, Fujii T, Shinya T, Shao J.F, Watanuki S, Saitoh Y, Ma J.F. Shoot-Silicon-Signal protein to regulate root silicon uptake in rice. Nature Communications 15: 10712. doi.org/10.1038/s41467-024-55322-7 (2024. 12.)
(12) Guo Z, Orädd F, Bågenholm V, Grønberg C, Ma J.F, Ott P, Wang Y, Andersson M, Pedersen P.A, Wang K, Gourdon P. Diverse roles of the metal binding domains and transport mechanism of copper transporting P-type ATPases. Nat. Commun. 15: 2690. doi.org/10.1038/s41467-024-47001-4 (2024. 3. Online preview.)
(13) Yamamoto T, Kashihara K, Furuta T, Zhang Q, Yu E, Ma J.F. Genetic background influences mineral accumulation in rice straw and grains under different soil pH conditions. Sci. Rep. 14: 15139. doi.org/10.1038/s41598-024-66036-7 (2024. 7. Online preview.)
(14) Huang H, Yamaji N, Huang S, Ma J.F. Uptake and accumulation of cobalt is mediated by OsNramp5 in rice. Plant Cell Environ. doi.org/10.1111/pce.15130 (2024. 9. Online preview.)


Back to Top