Research

Group of Plant Stress Physiology

hd_h1  Link to group homepage

Faculty staff

Prof. Dr. Jian Feng Ma
E-mail: majATokayama-u.ac.jp
(please change AT to @ before sending)
Assoc. Prof. Dr. Naoki YAMAJI
E-mail: n-yamajiATokayama-u.ac.jp
(please change AT to @ before sending)
Assoc. Prof. Dr. Namiki MITANI
E-mail:namiki-mATokayama-u.ac.jp
(please change AT to @ before sending)

Lectures: Plant Stress Physiology, Plant Stress Physiology, Plant Stress Molecular Biology
Keywords: Mineral stress; Nutrition; Transport; Crop


Summary of main research topics

Strategies of plants to overcome mineral stresses
Plants rooting in soil must take up mineral nutrients as well as water for their growth. A deficiency or excess of a mineral element can cause growth inhibition. However, some plant species have developed strategies to overcome mineral stresses. Our group specifically examines the mechanisms of uptake, distribution, and accumulation of mineral elements including essential, beneficial and toxic elements from the intact plant level to the gene level. We aim at making a future contribution to sustainable and safe crop production.
PSP

Latest publications (for complete and most current publications visit group pages)

(1) Ma, J. F. Profile. New Phytologist 229: 673-674. doi.org/10.1111/nph.17066 (2021. 1.)
(2) Lei, G. J., Yamaji, N. and Ma, J. F. Two metallothionein genes highly expressed in rice nodes are involved in distribution of Zn to the grain. New Phytologist 229: 1007-1020. doi.org/10.1111/nph.16860 (2021. 1.)
(3) Wiggenhauser, M., Aucour, A.M., Bureau, S., Campillo, S., Telouk, P., Romani, M., Ma, J. F., Landrot, G. and Sarret, G. Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation. Environmental Pollution 269: 115934. doi: 10.1016/j.envpol.2020.115934 (2021. 1.)
(4) Huang, S. and Ma, J. F. Chapter 3. Transport of mineral elements from soil and human health. In The Soil-Human Health Nexus. 12pages, Ed. R. Lal. CRC Press. ISBN 9780367422134 (2021. 1.)
(5) Mitani-Ueno, N. and Ma, J. F. Linking transport system of silicon with its accumulation in different plant species. Soil Sci. Plant Nutr. 67: 10-17. doi.org/10.1080/00380768.2020.1845972 (2021. 2.)
(6) Mu, S., Yamaji, N., Sasaki, A., Le, L., Du, B., Che, J., Shi, H., Zhao, H., Huang, S., Deng, F., Shen, Z., Lou Guerinot, M., Zheng, L. and Ma, J. F. A transporter for delivering zinc to the developing tiller bud and panicle in rice. Plant J. 105: 786-799. doi.org/10.1111/tpj.15073 (2021. 2.)
(7) Ma, J. F., Shen, R. F. and Shao, J. F. Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 31: 3-10. doi: 10.1016/S1002-0160(20)60015-7 (2021. 2.)
(8) Ogawa, D., Suzuki, Y., Yokoo, T., Katoh, E., Teruya, M., Muramatsu, M., Ma, J. F., Yoshida, Y., Isaji, S., Ogo, Y., Miyao, M., Kim, J-M., Kojima, M., Takebayashi, Y., Sakakibara, H., Takeda, S., Okada, K., Mori, N., Seki, M. and Habu, Y. Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Scientific Reports 11: 6280. doi: 10.1038/s41598-021-85355-7 (2021. 3.)
(9) Shao, J. F., Yamaji, N., Huang, S. and Ma, J. F. Fine regulation system for distribution of boron to different tissues in rice. New Phytologist 230: 656-668. doi.org/10.1111/nph.17169 (2021. 4.)
(10) Ma, J. F. and Tsay, Y. F. Transport systems of mineral elements in plants: transporters, regulation and utilization. Plant and Cell Physiology 62: 539-540. doi.org/10.1093/pcp/pcab026 (2021. 4.)
(11) Yokosho, K., Yamaji, N. and Ma, J. F. Buckwheat FeNramp5 mediates high manganese uptake in roots. Plant and Cell Physiology 62: 600-609. doi.org/10.1093/pcp/pcaa153 (2021. 4.)
(12) Sun, L. M., Che, J., Ma, J. F. and Shen, R. F. Expression level of transcription factor ART1 is responsible for differential aluminum tolerance in Indica rice. Plants 10: 634. doi.org/10.3390/plants10040634 (2021. 4.)
(13) 馬 建鋒 進歩総説「植物のミネラル輸送研究最前線」の掲載にあたり. 日本土壌肥料学雑誌 92: 69. doi.org/10.20710/dojo.92.2_69 (2021. 4.)
(14) 黄 勝・山地直樹・馬 建鋒 亜鉛の輸送機構. 日本土壌肥料学雑誌 92: 136-140. doi.org/10.20710/dojo. 92.2_136 (2021. 4.)
(15) 三谷奈見季・馬 建鋒 ケイ素の輸送機構. 日本土壌肥料学雑誌 92: 160-165. doi.org/10.20710/dojo. 92.2_160 (2021. 4.)
(16) 馬 建鋒・田野井慶太郎・古川 純・鈴井伸郎・Wang Peng・山地直樹・高野順平 植物の元素イメージング. 日本土壌肥料学雑誌 92: 213-218. doi.org/10.20710/dojo.92.2_213 (2021. 4.)
(17) Zhang, X. L., Wu, Q., Tao, Y., Zhu, X. F., Takahashi, N., Umeda, M., Shen, R. F. and Ma, J. F. ANAC044 is associated with P reutilization in P deficient Arabidopsis thaliana root cell wall in an ethylene dependent manner. Environmental and Experimental Botany 185: 104386. doi.org/10.1016/j.envexpbot.2021.104386 (2021. 5.)
(18) Che, J., Yamaji, N. and Ma, J. F. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytologist 230: 1049-1062. doi.org/10.1111/nph.17219 (2021. 5.)
(19) 馬 建鋒 穀物におけるカドミウムの集積機構:安全な作物の作出の作出に向けて. 清淵 868: 24-26.(渋沢栄一記念財団機関誌)(2021. 7.)
(20) Sato, K., Takeda, K. and Ma, J. F. Germplasm evaluation for crop improvement: analysis of grain quality and cadmium toxicity in barley. Journal of Cereal Science 101: 103297. doi.org/10.1016/j.jcs.2021.103297 (2021. 9.)
(21) Ogasawara, M., Miyazaki, N., Monden, G., Taniko, K., Lim, S., Iwata, M., Ishii, T., Ma, J. F. and Ishikawa, R. Role of qGZn9a in controlling grain zinc concentration in rice, Oryza sativa L. Theoretical and Applied Genetics 134: 3013-25 3022. doi.org/10.1007/s00122-021-03873-4 (2021. 9.)
(22) Yu, E., Yamaji, N., Mochida, K., Galis, I., Asaka, K. and Ma, J. F. LYSINE KETOGLUTARATE REDUCTASE TRANSSPLICING RELATED 1 is involved in a temperature-dependent root growth in rice. Journal of Experimental Botany
72: 6336-6349. doi.org/10.1093/jxb/erab240 (2021. 9.)
(23) Yu, E., Yamaji, N., Mao, C., Wang, H. and Ma, J. F. Lateral roots but not root hairs contribute to high uptake of manganese and cadmium in rice. Journal of Experimental Botany 72: 7219-7228. doi.org/10.1093/jxb/erab329 (2021. 10.)
(24) Saitoh, Y., Mitani-Ueno, N., Saito, K., Matsuki, K., Huang, S., Yang, L., Yamaji, N., Ishikita, H., Shen, J. R., Ma, J. F.*, and Suga, M.* Structural basis for high selectivity of a rice silicon channel Lsi1. Nature Communications 12: 6236. doi.org/10.1038/s41467-021-26535-x (*co-corresponding author) (2021. 10.)
(25) Konishi, N. and Ma, J. F. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. New Phytologist 232: 1778-1792. doi.org/10.1111/nph.17679 (2021. 11.)
(26) Yamaji, N. and Ma, J. F. Metalloid transporters and their regulation in plants. Plant Physiology 187: 1929-1939. doi.org/10.1093/plphys/kiab326 (2021. 12.)
(27) Huang, S., Yamaji, N. and Ma, J. F. Zinc Transport in Rice: Dilemma between optimal plant requirement and human nutrition. Journal of Experimental Botany doi.org/10.1093/jxb/erab478 (2021. 11. Online preview)
(28) Huang, S., Konishi, N., Yamaji, N., Shao, J. F., Mitani-Ueno, N. and Ma, J. F. Boron uptake in rice is regulated posttranslationally via a clathrin-independent pathway. Plant Physiology doi.org/10.1093/plphys/kiab575 (2021. 12. Online preview)


Back to Top