Group of Plant Stress Physiology

hd_h1  Link to group homepage

Faculty staff


Prof. Dr. Jian Feng Ma
(please change AT to @ before sending)
Assoc. Prof. Dr. Naoki YAMAJI
(please change AT to @ before sending)
Assoc. Prof. Dr. Namiki MITANI
(please change AT to @ before sending)
Assist. Prof. Dr. Noriyuiki KONISHI
(please change AT to @ before sending)

Lectures: Plant Stress Physiology, Plant Stress Physiology, Plant Stress Molecular Biology
Keywords: Mineral stress; Nutrition; Transport; Crop

Summary of main research topics

Strategies of plants to overcome mineral stresses
Plants rooting in soil must take up mineral nutrients as well as water for their growth. A deficiency or excess of a mineral element can cause growth inhibition. However, some plant species have developed strategies to overcome mineral stresses. Our group specifically examines the mechanisms of uptake, distribution, and accumulation of mineral elements including essential, beneficial and toxic elements from the intact plant level to the gene level. We aim at making a future contribution to sustainable and safe crop production.

Latest publications (for complete and most current publications visit group pages)

(1) Ma, J. F., Zhao, F-J., Rengel, Z., Cakmak, I. Chapter 8 – Beneficial elements. In Marschner’s Mineral Nutrition of Plants (Fourth Edition), Elsevier Ltd., Editor(s): Rengel, Z., Cakmak, I., White, P. J. Academic Press, pp. 387-418. ISBN:9780128197738 (2023. 1.)
(2) Yu, E., Yamaji, N., Ma, J. F. Linking root morphology and anatomy with transporters for mineral element uptake in plants. Plant and Soil 484: 1-12. (2023. 3.)
(3) Hu, Y., Zhao, T., Guo, Y., Wang, M., Brachhold, K., Chu, C., Hanson, S., Lin, R., Long, W., Luo, M., Ma, J. F., … and Zhang, Q. 100 essential questions for the future of agriculture. Modern Agriculture 1: 4-12. (2023. 4.)
(4) Gao, L. J., Liu, X. P., Gao, K. K., Cui, M. Q., Zhu, H. H., Li, G. X., Yan, J. Y., Wu, Y. R., Ding, Z. J., Chen, X. W., Ma, J. F., Harberd, N. P., Zheng, S. J. ART1 and putrescine contribute to rice aluminum resistance via OsMYB30 in cell wall modification. Journal of Integrative Plant Biology 65: 934-949. (2023. 4.)
(5) Konishi, N., Mitani-Ueno, N., Yamaji, N., Ma, J. F. Polar localization of a rice silicon transporter requires isoleucine at both C-and N-termini as well as positively charged residues. The Plant Cell 35: 2232-2250. (2023. 6.)
(6) Wang, P., Ma, J. F. Knockout of a gene encoding a Gγ protein boosts alkaline tolerance in cereal crops. aBIOTECH 4: 180-183. (2023. 7.) 
(7) Ning, M., Liu, S. J., Deng, F., Huang, L., Li, H., Che, J., Yamaji, N., Hu, F., Lei, G. J. A vacuolar transporter plays important roles in zinc and cadmium accumulation in rice grain. New Phytologist 239: 1919-1934. (2023. 9.)
(8) Mitani-Ueno, N., Yamaji, N., Huang, S., Yoshioka, Y., Miyaji, T., Ma, J. F. A silicon transporter gene required for healthy growth of rice on land. Nature Communications 14: 6522. (2023. 10.)
(9) 黄 勝 イネのミネラル輸送体の機能解明.日本土壌肥料学雑誌 94: 362-363. (2023. 10.)
(10) Chang, J. D., Huang, S., Wiseno, I., Sui, F. Q., Feng, F., Zheng, L., Ma, J. F., Zhao, F. J. Dissecting the promotional effect of zinc on cadmium translocation from roots to shoots in rice. Journal of Experimental Botany (2023. 8. Online preview)
(11) Wang, P., Yamaji, N., Mitani-Ueno, N., Ge, J., Ma, J. F. Knockout of a rice K5. 2 gene increases Ca accumulation in the grain. Journal of Integrative Plant Biology (2023.11. Online preview)
(12) Huang, S., Yamaji, N., Konishi, N., Ma, J. F. Local distribution of manganese to leaf sheath is mediated by OsNramp5 in rice. New Phytologist (2023. 12. Online preview)

Back to Top