
Research
Plant Light Acclimation Research Group
![]() |
Link to group homepage |
Faculty staff
![]() |
Prof. Dr. Wataru SAKAMOTO E-mail:sakaATokayama-u.ac.jp |
(please change AT to @ before sending) | ||
![]() |
Assoc. Prof. Dr. Ryo MATSUSHIMA E-mail:rmatsuATokayama-u.ac.jp |
(please change AT to @ before sending) | ||
![]() |
Assoc. Prof. Dr. Yuki OKEGAWA E-mail:okegawaATokayama-u.ac.jp |
(please change AT to @ before sending) |
Lectures: Model Plant Genetics and Breeding, Plant Physiology and Genetics
Keywords: Photosynthesis; Organelle structure and development; Chloroplast; Light
Summary of main research topics
Photosynthesis and chloroplast biogenesis: Understanding to innovation Our life on earth cannot continue without the atmospheric environment, which is maintained by oxygenic photosynthesis. Plants perform photosynthesis in chloroplasts, where light energy is converted into chemical energy by a series of electrochemical reactions. In contrast, sessile land plants are exposed incessantly to excess light energy or harsh atmospheric environments that engender ‘photodamage’. How do plants cope with such photosynthetic inactivation? What are the key elements to maintaining or even maximizing chloroplast functions? Our group studies various aspects of chloroplast development and photosynthesis. Through understanding of the factors involved in photoprotection and chloroplast function, we aim at improving crop productivity against atmospheric stress over the long term. |
![]() |
Latest publications (for complete and most current publications visit group pages)
(1) Ozawa S.I, Zhang G, Sakamoto W. Dysfunction of Chloroplast Protease Activity Mitigates pgr5 Phenotype in the GreenAlgae Chlamydomonas reinhardtii. Plants (Basel) 13: 606. doi.org/10.3390/plants13050606 (2024. 2.)
(2) 小川 由 シロイヌナズナのFZL タンパク質による葉緑体膜リモデリングの遺伝生理学的解析.博士学位論文 (岡山大学) (2024. 3.)
(3) Sakamoto W, Takami T. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms. Plant Cell Physiol. 65: 484-492. doi.org/10.1093/pcp/pcad104 (2024. 4.)
(4) Kumari P, Matsushima R, Hirayama T, Mikami K. Responses of the marine filamentous red alga ʻBangiaʼ sp. ESS1 to recurrent changes in seawater concentration. Algal Res. 80: 103551. doi.org/10.1016/j.algal.2024.103551 (2024. 5.)
(5) Islam M.F, Yamatani H, Takami T, Kusaba M, Sakamoto W. Characterization of organelle DNA degradation mediated by DPD1 exonuclease in the rice genome-edited line. Plant Mol. Biol. 114: 71. doi.org/10.1007/s11103-024-01452-x (2024. 6.)
(6) Matsushima R, Hisano H, Kim J.S, McNelly R, Oitome N.F, Seung D, Fujita N, Sato, K. Mutations in starch BRANCHING ENZYME 2a suppress the traits caused by the loss of ISOAMYLASE1 in barley. Theor. Appl. Genet. 137: 212. doi.org/10.1007/s00122-024-04725-7 (2024. 8.)
(7) 加藤裕介・坂本 亘 光合成反応における光損傷と修復のメカニズムの解明. 光アライアンス 35: 9-12. (2024.9.)
(8) Islam M.F. Studies on the role of organelle DNA degradation mediated by DPD1 nuclease in rice. 博士学位論文 (岡山大学)(2024. 9.)
(9) Brunje A, Fussl M, Eirich J, Boyer J, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa S, Sakamoto W, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier I. The plastidial protein acetyltransferase GNAT1 forms a complex with GNAT2, yet their interaction is dispensablefor state transitions. Mol. Cell Proteomics. 23: 100850. doi.org/10.1016/j.mcpro.2024.100850 (2024. 11.)