植物ストレス学グループ

植物ストレス学グループのホームページへ

教員

教授: 馬 建鋒 Prof. Dr. Jian Feng Ma
E-mail: maj@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物栄養学
准教授: 山地 直樹 Assoc. Prof. Dr. Naoki YAMAJI
E-mail: n-yamaji@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物分子生物学
准教授: 三谷 奈見季 Assoc. Prof. Dr. Namiki MITANI
E-mail:namiki-m@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物栄養学
助教: 横正 健剛 Assist. Prof. Dr. Kengo YOKOSHO
E-mail:k-yokosho@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物栄養学

主な研究テーマ

1. 植物のミネラルの吸収・分配・蓄積機構の解明
植物の必須元素(鉄、マンガン、亜鉛、銅など)や様々なストレスを軽減する働きを持つケイ素などを、根から吸収し、各器官へと分配蓄積する分子機構について、輸送体(トランスポーター)などの分子生物学的解析と植物栄養生理学的な研究によって統合的に明らかにする。
STRtheme1_R

2. 植物の酸性土壌耐性機構の解明
世界の耕地の3〜4割を占める酸性土壌ではアルミニウムイオンが溶出し植物の生育を強く阻害すが、一部の植物はアルミニウムイオン毒性に対する耐性機構を発達させている。本研究ではこの耐性機構を分子・遺伝子レベルで解明し、酸性土壌での作物生産性の向上に貢献する。
STRtheme2_R

3. コメのヒ素およびカドミウムの蓄積低減
ヒ素およびカドミウムは非常に毒性が強く、植物の生育に影響しないレベルの低濃度であっても食物連鎖を経て摂取し続けることで蓄積毒性による健康被害を生じる恐れがある。本研究では主に我々の主食であるコメについて、遺伝学的手法と植物栄養生理学的解析を組み合わせ、ヒ素およびカドミウムの吸収・蓄積経路を解明することで、その蓄積を低減する方策を確立する。
STRtheme3_R

Latest publications (for complete and most current publications visit group pages)

(1) Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J. and Bélanger, R. R. The controversies of silicon’s role in plant biology. New Phytol. 221: 67-85. doi.org/10.1111/nph.15343 (2019. 1.)
(2) Chang, M., Gu, M., Xia, Y., Dai, X., Dai, C., Zhang, J., Wang, S., Qu, H., Yamaji, N., Ma, J. F. and Xu, G. OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. Plant Physiol. 179: 656-670. doi.org/10.1104/pp.18.01097 (2019. 2.)
(3) Wang, W., Yamaji, N. and Ma, J. F. Molecular Mechanism of Cadmium Accumulation in Rice. Cadmium Toxicity, pp. 115-124. Springer, Singapore. doi.org/10.1007/978-981-13-3630-0_9 (2019. 2.)
(4) Chen, L., Qin, L., Zhou, L., Li, X., Chen, Z., Sun, L., Wang, W., Lin, Z., Zhao, J., Yamaji, N., Ma, J. F., Gu, M., Xu, G. and Liao, H. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean. New Phytol. 221: 2013-2025. doi.org/10.1111/nph.15541 (2019. 3.)
(5) Cai, H., Huang, S., Che, J., Yamaji, N. and Ma, J. F. The tonoplast-localized OsHMA3 plays an important role in maintaining Zn homeostasis in rice. J. Exp. Bot. 70: 2717-2725. doi.org/10.1093/jxb/erz091 (2019. 5.)
(6) Lu, C., Zhang, L., Tang, Z., Huang, X. Y., Ma, J. F. and Zhao, F. J. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environment International 126: 619-626. doi.org/10.1016/j.envint.2019.03.004 (2019. 5.)
(7) Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J. and Bélanger, R. R. In defence of the selective transport and role of silicon in plants. New Phytol. 223: 514-516. doi.org/10.1111/nph.15764 (2019. 7.)
(8) Wang, S., Yokosho, K., Guo, R., Whelan, J., Ruan, Y. L., Ma, J. F. and Shou, H. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol. 180: 2133-2141. doi.org/10.1104/pp.19.00641 (2019. 8.)
(9) Yamaji, N. and Ma, J. F. Bioimaging of multiple elements by high‐resolution LA‐ICP‐MS reveals altered distribution of mineral elements in the nodes of rice mutants. Plant J. 99: 1254-1263. doi.org/10.1111/tpj.14410 (2019. 9.)
(10) Peng, Y. Y., Liao, L. L., Liu, S., Nie, M. M., Li, J., Zhang, L. D., Ma, J. F. and Chen, Z. C. Magnesium deficiency triggers SGR–mediated chlorophyll degradation for magnesium remobilization. Plant Physiol. 181: 262-275. doi.org/10.1104/pp.19.00610 (2019. 9.)
(11) Che, J., Yokosho, K., Yamaji, N. and Ma, J. F. A vacuolar phytosiderophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiol. 181: 276-288. doi.org/10.1104/pp.19.00598 (2019. 9.)
(12) Fu, S., Lu, Y., Zhang, X., Yang, G., Chao, D., Wang, Z., Shi, M., Chen, J., Chao, D., Li, R., Ma, J. F. and Xia, J. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J. Exp. Bot. 70: 5909-5918. doi.org/10.1093/jxb/erz335 (2019. 10.)
(13) Wang, Z., Yamaji, N., Huang, S., Zhang, X., Shi, M., Fu, S. Yang, G., Ma, J. F.*and Xia, J.* OsCASP1 is required for Casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell 31: 2636-2648. doi.org/10.1105/tpc.19.00296 (2019. 11.)
(14) Schaller, J., Heimes, R., Ma, J.F. Meunier, J-D, Shao, J. F., Fujii-Kashino, M. and Knorr, K. H. Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant and Soil 444: 399-407. doi.org/10.1007/s11104-019-04267-8 (2019. 11.)
(15) Pommerrenig, B., Diehn, T.A., Bernhardt, N., Bienert, M. D., Mitani‐Ueno, N., Fuge, J., Bieber, A., Spitzer, C., Bräutigam, A., Ma, J. F., Chaumont, F. and Bienert, G. P. Functional evolution of nodulin26‐like Intrinsic proteins: from bacterial arsenic detoxification to plant nutrient transport. New Phytologist doi.org/10.1111/nph.16217 (2019. 9. Online preview)
(16) Wang, S., Li, L., Ying, Y., Wang, J., Shao, J. F., Yamaji, N., Whelan, J., Ma, J. F. and Shou, H. A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localizing IRO2 to the nucleus in rice. New Phytologist doi.org/10.1111/nph.16232 (2019. 10. Online preview)
(17) Ding, G., Lei, G. J., Yamaji, N., Yokosho, K., Mitani-Ueno, N., Huang, S. and Ma, J. F. Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis. Molecular Plant doi.org/10.1016/j.molp.2019.10.002 (2019. 10. Online preview)
(18) Sun, H., Duan, Y., Mitani‐Ueno, N., Che, J., Jia, J., Liu, J., Guo, J., Ma, J.F. and Gong, H. Tomato roots have a functional silicon influx transporter, but not a functional silicon efflux transporter. Plant, Cell & Environment doi.org/10.1111/pce.13679 (2019. 11. Online preview)
(19) Yu, E., Yamaji, N. and Ma, J.F. Altered root structure affects both expression and cellular localization of transporters for mineral element uptake in rice. Plant and Cell Physiology doi.org/10.1093/pcp/pcz213 (2019. 11. Online preview)
(20) Wang, P., Yamaji, N., Inoue, K., Mochida, K. and Ma, J.F. Plastic transport systems of rice for mineral elements in response to diverse soil environmental changes. New Phytologist doi.org/10.1111/nph.16335 (2019. 11. Online preview)