研究組織

植物ストレス学グループ

植物ストレス学グループのホームページへ

教員

教授: 馬 建鋒 Prof. Dr. Jian Feng Ma
E-mail: maj@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物栄養学
准教授: 山地 直樹 Assoc. Prof. Dr. Naoki YAMAJI
E-mail: n-yamaji@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物分子生物学
准教授: 三谷 奈見季 Assoc. Prof. Dr. Namiki MITANI
E-mail:namiki-m@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物栄養学
助教: 横正 健剛 Assist. Prof. Dr. Kengo YOKOSHO
E-mail:k-yokosho@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物栄養学

主な研究テーマ

1. 植物のミネラルの吸収・分配・蓄積機構の解明
植物の必須元素(鉄、マンガン、亜鉛、銅など)や様々なストレスを軽減する働きを持つケイ素などを、根から吸収し、各器官へと分配蓄積する分子機構について、輸送体(トランスポーター)などの分子生物学的解析と植物栄養生理学的な研究によって統合的に明らかにする。
STRtheme1_R

2. 植物の酸性土壌耐性機構の解明
世界の耕地の3〜4割を占める酸性土壌ではアルミニウムイオンが溶出し植物の生育を強く阻害すが、一部の植物はアルミニウムイオン毒性に対する耐性機構を発達させている。本研究ではこの耐性機構を分子・遺伝子レベルで解明し、酸性土壌での作物生産性の向上に貢献する。
STRtheme2_R

3. コメのヒ素およびカドミウムの蓄積低減
ヒ素およびカドミウムは非常に毒性が強く、植物の生育に影響しないレベルの低濃度であっても食物連鎖を経て摂取し続けることで蓄積毒性による健康被害を生じる恐れがある。本研究では主に我々の主食であるコメについて、遺伝学的手法と植物栄養生理学的解析を組み合わせ、ヒ素およびカドミウムの吸収・蓄積経路を解明することで、その蓄積を低減する方策を確立する。
STRtheme3_R

Latest publications (for complete and most current publications visit group pages)

(1) Ding, G., Lei, G. J., Yamaji, N., Yokosho, K., Mitani-Ueno, N., Huang, S. and Ma, J. F. Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis. Molecular Plant 13: 99-111. doi.org/10.1016/j.molp.2019.10.002 (2020. 1.)
(2) Wang, S., Li, L., Ying, Y., Wang, J., Shao, J. F., Yamaji, N., Whelan, J., Ma, J. F. and Shou, H. A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localizing IRO2 to the nucleus in rice. New Phytologist 225: 1247-1260. doi.org/10.1111/nph.16232 (2020. 2.)
(3) Pommerrenig, B., Diehn, T. A., Bernhardt, N., Bienert, M. D., Mitani-Ueno, N., Fuge, J., Bieber, A., Spitzer, C., Bräutigam, A., Ma, J. F., Chaumont, F. and Bienert, G. P. Functional evolution of nodulin26-like Intrinsic proteins: from bacterial arsenic detoxification to plant nutrient transport. New Phytologist 225: 1383-1396. doi.org/10.1111/nph.16217 (2020. 2.)
(4) Sun, H., Duan, Y., Mitani-Ueno, N., Che, J., Jia, J., Liu, J., Guo, J., Ma, J. F. and Gong, H. Tomato roots have a functional silicon influx transporter, but not a functional silicon efflux transporter. Plant, Cell & Environment 43: 732-744. doi.org/10.1111/pce.13679 (2020. 3.)
(5) Yu, E., Yamaji, N. and Ma, J. F. Altered root structure affects both expression and cellular localization of transporters for mineral element uptake in rice. Plant and Cell Physiology 61: 481-491. doi.org/10.1093/pcp/pcz213 (2020. 3.)
(6) Nagaki, K. and Yamaji, N. Decrosslinking enables visualization of RNA-guided endonuclease-in situ labeling signals for DNA sequences in plant tissues. J. Exp. Bot. 71: 1792-1800. doi.org/10.1093/jxb/erz534 (2020. 3.)
(7) Wang, P., Yamaji, N., Inoue, K., Mochida, K. and Ma, J. F. Plastic transport systems of rice for mineral elements in response to diverse soil environmental changes. New Phytologist 226: 156-169. doi.org/10.1111/nph.16335 (2020. 4.)
(8) Li, J., Yokosho, K., Liu, S., Cao, H. R., Yamaji, N., Zhu, X. G., Liao, H., Ma, J. F. and Chen, Z. C. Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice. Nature Plants 6: 848-859. doi.org/10.1038/s41477-020-0686-3 (2020. 6.)
(9) Wang, C., Zheng, L., Tang, Z., Sun, S., Ma, J. F., Huang, X. Y. and Zhao, F. J. OASTL-A1 functions as a cytosolic cysteine synthase and affects arsenic tolerance in rice. J. Exp. Bot. 71: 3678-3689. doi.org/10.1093/jxb/eraa113 (2020. 6.)
(10) Huang, S., Wang, P., Yamaji, N. and Ma, J. F. Plant nutrition for human nutrition: hints from rice research and future perspectives. Molecular Plant 13: 825-835. doi.org/10.1016/j.molp.2020.05.007 (2020. 6.)
(11) Huang, S., Sasaki, A., Yamaji, N., Okada, H., Mitani-Ueno, N. and Ma, J. F. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol. 183: 1224-1234. doi.org/10.1104/pp.20.00125 (2020. 7.)
(12) Lei, G. J., Fujii-Kashino, M., Wu, D. Z., Hisano, H., Saisho, D., Deng, F., Yamaji, N., Sato, K., Zhao, F. J. and Ma, J. F. Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nature Food 1: 489-499. doi.org/10.1038/s43016-020-0130-x (2020. 8.)
(13) Che, J., Yamaji, N., Miyaji, T., Mitani-Ueno, N., Kato, Y., Shen, R. F. and Ma, J. F. Node-localized transporters of phosphorus essential for seed development in rice. Plant Cell Physiol. 61: 1387-1398. doi.org/10.1093/pcp/pcaa074(2020. 8.)
(14) Chang, J. D., Huang, S., Konishi, N., Wang, P., Chen, J., Huang, X. Y., Ma, J. F. and Zhao, F. J. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. J. Exp. Bot. 71: 5705-5715. doi.org/10.1093/jxb/eraa287 (2020. 9.)
(15) Chikoti, Y. F., Supriadi, Duangkhet, M., Chungopast, S., Tajima, S., Ma, J. F. and Nomura, M. Effect of ferritin on nitrogen fixation in Lotus japonicus nodules under various iron concentrations. Journal of Plant Physiology 252: 153247. doi.org/10.1016/j.jplph.2020.153247 (2020. 9.)
(16) Chang, J. D., Huang, S., Yamaji, N., Zhang, W., Ma, J. F. and Zhao, F. J. OsNRAMP1 transporter contributes to cadmium 26 and manganese uptake in rice. Plant, Cell & Environment 43: 2476-2491. doi.org/10.1111/pce.13843 (2020. 10.)
(17) Wang, S., Liu, S., Wang, J., Yokosho, K., Zhou, B., Yu, Y. C., Liu, Z., Frommer, W. B., Ma, J. F., Chen, L. Q., Guan, Y., Shou, H. and Tian, Z. Simultaneous changes in seed size, oil content, and protein content driven by selection of SWEET homologues during soybean domestication. National Science Review 7: 1776-1786. doi.org/10.1093/nsr/nwaa110 (2020. 11.)
(18) Noronha, H., Silva, A., Mitani-Ueno, N., Conde, C., Sabir, F., Prista, C., Soveral, G., Isenring, P., Ma, J. F., Bélanger, R. R. and Gerós, H. The grapevine NIP2;1 aquaporin is a silicon channel. J. Exp. Bot. doi.org/10.1093/jxb/eraa294 (2020. 6. Online preview)
(19) Lei, G. J., Yamaji, N. and Ma, J. F. Two metallothionein genes highly expressed in rice nodes are involved in distribution of Zn to the grain. New Phytologist doi.org/10.1111/nph.16860 (2020. 8. Online preview)
(20) Huang, S. and Ma, J. F. Silicon suppresses zinc uptake through down-regulating zinc transporter gene in rice. Physiologia Plantarum doi.org/10.1111/ppl.13196 (2020. 8. Online preview)
(21) Mitani-Ueno, N. and Ma, J. F. Linking transport system of silicon with its accumulation in different plant species. Soil Sci. Plant Nutr. doi.org/10.1080/00380768.2020.1845972 (2020. 11. Online preview)
(22) Mu, S., Yamaji, N., Sasaki, A., Le, L., Du, B., Che, J., Shi, H., Zhao, H., Huang, S., Deng, F., Shen, Z., Lou Guerinot, M., Zheng, L. and Ma, J. F. A transporter for delivering zinc to the developing tiller bud and panicle in rice. Plant J. doi.org/10.1111/tpj.15073 (2020. 11. Online preview)


Back to Top