研究組織

植物ストレス学グループ

植物ストレス学グループのホームページへ

教員

 

教授: 馬 建鋒 Prof. Dr. Jian Feng Ma
E-mail: maj@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物栄養学
准教授: 山地 直樹 Assoc. Prof. Dr. Naoki YAMAJI
E-mail: n-yamaji@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物分子生物学
准教授: 三谷 奈見季 Assoc. Prof. Dr. Namiki MITANI
E-mail:namiki-m@(@以下はokayama-u.ac.jp を付けてください。)
専門分野: 植物栄養学

主な研究テーマ

1. 植物のミネラルの吸収・分配・蓄積機構の解明
植物の必須元素(鉄、マンガン、亜鉛、銅など)や様々なストレスを軽減する働きを持つケイ素などを、根から吸収し、各器官へと分配蓄積する分子機構について、輸送体(トランスポーター)などの分子生物学的解析と植物栄養生理学的な研究によって統合的に明らかにする。
STRtheme1_R

2. 植物の酸性土壌耐性機構の解明
世界の耕地の3〜4割を占める酸性土壌ではアルミニウムイオンが溶出し植物の生育を強く阻害すが、一部の植物はアルミニウムイオン毒性に対する耐性機構を発達させている。本研究ではこの耐性機構を分子・遺伝子レベルで解明し、酸性土壌での作物生産性の向上に貢献する。
STRtheme2_R

3. コメのヒ素およびカドミウムの蓄積低減
ヒ素およびカドミウムは非常に毒性が強く、植物の生育に影響しないレベルの低濃度であっても食物連鎖を経て摂取し続けることで蓄積毒性による健康被害を生じる恐れがある。本研究では主に我々の主食であるコメについて、遺伝学的手法と植物栄養生理学的解析を組み合わせ、ヒ素およびカドミウムの吸収・蓄積経路を解明することで、その蓄積を低減する方策を確立する。
STRtheme3_R

Latest publications (for complete and most current publications visit group pages)

(1) Ma, J. F. Profile. New Phytologist 229: 673-674. doi.org/10.1111/nph.17066 (2021. 1.)
(2) Lei, G. J., Yamaji, N. and Ma, J. F. Two metallothionein genes highly expressed in rice nodes are involved in distribution of Zn to the grain. New Phytologist 229: 1007-1020. doi.org/10.1111/nph.16860 (2021. 1.)
(3) Wiggenhauser, M., Aucour, A.M., Bureau, S., Campillo, S., Telouk, P., Romani, M., Ma, J. F., Landrot, G. and Sarret, G. Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation. Environmental Pollution 269: 115934. doi: 10.1016/j.envpol.2020.115934 (2021. 1.)
(4) Huang, S. and Ma, J. F. Chapter 3. Transport of mineral elements from soil and human health. In The Soil-Human Health Nexus. 12pages, Ed. R. Lal. CRC Press. ISBN 9780367422134 (2021. 1.)
(5) Mitani-Ueno, N. and Ma, J. F. Linking transport system of silicon with its accumulation in different plant species. Soil Sci. Plant Nutr. 67: 10-17. doi.org/10.1080/00380768.2020.1845972 (2021. 2.)
(6) Mu, S., Yamaji, N., Sasaki, A., Le, L., Du, B., Che, J., Shi, H., Zhao, H., Huang, S., Deng, F., Shen, Z., Lou Guerinot, M., Zheng, L. and Ma, J. F. A transporter for delivering zinc to the developing tiller bud and panicle in rice. Plant J. 105: 786-799. doi.org/10.1111/tpj.15073 (2021. 2.)
(7) Ma, J. F., Shen, R. F. and Shao, J. F. Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 31: 3-10. doi: 10.1016/S1002-0160(20)60015-7 (2021. 2.)
(8) Ogawa, D., Suzuki, Y., Yokoo, T., Katoh, E., Teruya, M., Muramatsu, M., Ma, J. F., Yoshida, Y., Isaji, S., Ogo, Y., Miyao, M., Kim, J-M., Kojima, M., Takebayashi, Y., Sakakibara, H., Takeda, S., Okada, K., Mori, N., Seki, M. and Habu, Y. Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Scientific Reports 11: 6280. doi: 10.1038/s41598-021-85355-7 (2021. 3.)
(9) Shao, J. F., Yamaji, N., Huang, S. and Ma, J. F. Fine regulation system for distribution of boron to different tissues in rice. New Phytologist 230: 656-668. doi.org/10.1111/nph.17169 (2021. 4.)
(10) Ma, J. F. and Tsay, Y. F. Transport systems of mineral elements in plants: transporters, regulation and utilization. Plant and Cell Physiology 62: 539-540. doi.org/10.1093/pcp/pcab026 (2021. 4.)
(11) Yokosho, K., Yamaji, N. and Ma, J. F. Buckwheat FeNramp5 mediates high manganese uptake in roots. Plant and Cell Physiology 62: 600-609. doi.org/10.1093/pcp/pcaa153 (2021. 4.)
(12) Sun, L. M., Che, J., Ma, J. F. and Shen, R. F. Expression level of transcription factor ART1 is responsible for differential aluminum tolerance in Indica rice. Plants 10: 634. doi.org/10.3390/plants10040634 (2021. 4.)
(13) 馬 建鋒 進歩総説「植物のミネラル輸送研究最前線」の掲載にあたり. 日本土壌肥料学雑誌 92: 69. doi.org/10.20710/dojo.92.2_69 (2021. 4.)
(14) 黄 勝・山地直樹・馬 建鋒 亜鉛の輸送機構. 日本土壌肥料学雑誌 92: 136-140. doi.org/10.20710/dojo. 92.2_136 (2021. 4.)
(15) 三谷奈見季・馬 建鋒 ケイ素の輸送機構. 日本土壌肥料学雑誌 92: 160-165. doi.org/10.20710/dojo. 92.2_160 (2021. 4.)
(16) 馬 建鋒・田野井慶太郎・古川 純・鈴井伸郎・Wang Peng・山地直樹・高野順平 植物の元素イメージング. 日本土壌肥料学雑誌 92: 213-218. doi.org/10.20710/dojo.92.2_213 (2021. 4.)
(17) Zhang, X. L., Wu, Q., Tao, Y., Zhu, X. F., Takahashi, N., Umeda, M., Shen, R. F. and Ma, J. F. ANAC044 is associated with P reutilization in P deficient Arabidopsis thaliana root cell wall in an ethylene dependent manner. Environmental and Experimental Botany 185: 104386. doi.org/10.1016/j.envexpbot.2021.104386 (2021. 5.)
(18) Che, J., Yamaji, N. and Ma, J. F. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytologist 230: 1049-1062. doi.org/10.1111/nph.17219 (2021. 5.)
(19) 馬 建鋒 穀物におけるカドミウムの集積機構:安全な作物の作出の作出に向けて. 清淵 868: 24-26.(渋沢栄一記念財団機関誌)(2021. 7.)
(20) Sato, K., Takeda, K. and Ma, J. F. Germplasm evaluation for crop improvement: analysis of grain quality and cadmium toxicity in barley. Journal of Cereal Science 101: 103297. doi.org/10.1016/j.jcs.2021.103297 (2021. 9.)
(21) Ogasawara, M., Miyazaki, N., Monden, G., Taniko, K., Lim, S., Iwata, M., Ishii, T., Ma, J. F. and Ishikawa, R. Role of qGZn9a in controlling grain zinc concentration in rice, Oryza sativa L. Theoretical and Applied Genetics 134: 3013-25 3022. doi.org/10.1007/s00122-021-03873-4 (2021. 9.)
(22) Yu, E., Yamaji, N., Mochida, K., Galis, I., Asaka, K. and Ma, J. F. LYSINE KETOGLUTARATE REDUCTASE TRANSSPLICING RELATED 1 is involved in a temperature-dependent root growth in rice. Journal of Experimental Botany
72: 6336-6349. doi.org/10.1093/jxb/erab240 (2021. 9.)
(23) Yu, E., Yamaji, N., Mao, C., Wang, H. and Ma, J. F. Lateral roots but not root hairs contribute to high uptake of manganese and cadmium in rice. Journal of Experimental Botany 72: 7219-7228. doi.org/10.1093/jxb/erab329 (2021. 10.)
(24) Saitoh, Y., Mitani-Ueno, N., Saito, K., Matsuki, K., Huang, S., Yang, L., Yamaji, N., Ishikita, H., Shen, J. R., Ma, J. F.*, and Suga, M.* Structural basis for high selectivity of a rice silicon channel Lsi1. Nature Communications 12: 6236. doi.org/10.1038/s41467-021-26535-x (*co-corresponding author) (2021. 10.)
(25) Konishi, N. and Ma, J. F. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. New Phytologist 232: 1778-1792. doi.org/10.1111/nph.17679 (2021. 11.)
(26) Yamaji, N. and Ma, J. F. Metalloid transporters and their regulation in plants. Plant Physiology 187: 1929-1939. doi.org/10.1093/plphys/kiab326 (2021. 12.)
(27) Huang, S., Yamaji, N. and Ma, J. F. Zinc Transport in Rice: Dilemma between optimal plant requirement and human nutrition. Journal of Experimental Botany doi.org/10.1093/jxb/erab478 (2021. 11. Online preview)
(28) Huang, S., Konishi, N., Yamaji, N., Shao, J. F., Mitani-Ueno, N. and Ma, J. F. Boron uptake in rice is regulated posttranslationally via a clathrin-independent pathway. Plant Physiology doi.org/10.1093/plphys/kiab575 (2021. 12. Online preview)


Back to Top